Management of enzyme diversity in high-performance cellulolytic cocktails
نویسندگان
چکیده
BACKGROUND Modern biorefineries require enzymatic cocktails of improved efficiency to generate fermentable sugars from lignocellulosic biomass. Cellulolytic fungi, among other microorganisms, have demonstrated the highest potential in terms of enzymatic productivity, complexity and efficiency. On the other hand, under cellulolytic-inducing conditions, they often produce a considerable diversity of carbohydrate-active enzymes which allow them to adapt to changing environmental conditions. However, industrial conditions are fixed and adjusted to the optimum of the whole cocktail, resulting in underperformance of individual enzymes. RESULTS One of these cellulolytic cocktails from Myceliophthora thermophila has been analyzed here by means of LC-MS/MS. Pure GH6 family members detected have been characterized, confirming previous studies, and added to whole cocktails to compare their contribution in the hydrolysis of industrial substrates. Finally, independent deletions of two GH6 family members, as an example of the enzymatic diversity management, led to the development of a strain producing a more efficient cellulolytic cocktail. CONCLUSIONS These data indicate that the deletion of noncontributive cellulases (here EG VI) can increase the cellulolytic efficiency of the cocktail, validating the management of cellulase diversity as a strategy to obtain improved fungal cellulolytic cocktails.
منابع مشابه
Cellulase activity mapping of Trichoderma reesei cultivated in sugar mixtures under fed-batch conditions
BACKGROUND On-site cellulase production using locally available lignocellulosic biomass (LCB) is essential for cost-effective production of 2nd-generation biofuels. Cellulolytic enzymes (cellulases and hemicellulases) must be produced in fed-batch mode in order to obtain high productivity and yield. To date, the impact of the sugar composition of LCB hydrolysates on cellulolytic enzyme secretio...
متن کاملShotgun Approach to Increasing Enzymatic Saccharification Yields of Ammonia Fiber Expansion Pretreated Cellulosic Biomass
Most cellulolytic enzyme blends, either procured from a commercial vendor or isolated from a single cellulolytic microbial secretome, do not efficiently hydrolyze ammoniapretreated (e.g., ammonia fiber expansion, AFEX) lignocellulosic agricultural crop residues like corn stover to fermentable sugars. Typically reported commercial enzyme loading (30–100 mg protein/g glucan) necessary to achieve ...
متن کاملEvolution of substrate specificity in bacterial AA10 lytic polysaccharide monooxygenases
BACKGROUND Understanding the diversity of lignocellulose-degrading enzymes in nature will provide insights for the improvement of cellulolytic enzyme cocktails used in the biofuels industry. Two families of enzymes, fungal AA9 and bacterial AA10, have recently been characterized as crystalline cellulose or chitin-cleaving lytic polysaccharide monooxygenases (LPMOs). Here we analyze the sequence...
متن کاملHow does cellulosome composition influence deconstruction of lignocellulosic substrates in Clostridium (Ruminiclostridium) thermocellum DSM 1313?
BACKGROUND Bioethanol production processes involve enzymatic hydrolysis of pretreated lignocellulosic biomass into fermentable sugars. Due to the relatively high cost of enzyme production, the development of potent and cost-effective cellulolytic cocktails is critical for increasing the cost-effectiveness of bioethanol production. In this context, the multi-protein cellulolytic complex of Clost...
متن کاملGender Diversity in Management Positions and Organizational Performance: A Review of Literature
In this term paper, diversity in management positions and organizational performance is analyzed using gender diversity as a mediating role. The analysis is done based on the review of related literature. An organization’s success and competitiveness depends upon its ability to embrace diversity and realize the benefits. The success and failure of an organization is also linked with its leaders...
متن کامل